skip to main content

SciTech ConnectSciTech Connect

Title: Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)]

Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.
Authors:
;  [1]
  1. Computational Chemistry Unit, RIKEN Advanced Institute for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)
Publication Date:
OSTI Identifier:
22489699
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 14; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BOUNDARY CONDITIONS; DENSITY FUNCTIONAL METHOD; EVALUATION; FUNCTIONALS; HARTREE-FOCK METHOD; HYBRIDIZATION; INTEGRALS; NONLINEAR OPTICS