skip to main content

SciTech ConnectSciTech Connect

Title: Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.
Authors:
;  [1]
  1. Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)
Publication Date:
OSTI Identifier:
22489669
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 13; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ALGORITHMS; APPROXIMATIONS; EQUATIONS OF MOTION; ERRORS; REACTION KINETICS; SURFACES