skip to main content

SciTech ConnectSciTech Connect

Title: Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.
Authors:
 [1]
  1. Department of Computer Engineering, International Balkan University, Tashko Karadza 11A, Skopje (Macedonia, The Former Yugoslav Republic of)
Publication Date:
OSTI Identifier:
22489628
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 143; Journal Issue: 12; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMS; CONVERGENCE; EQUATIONS OF MOTION; MOLECULAR DYNAMICS METHOD; PARTICLES; SIMULATION; THERMOSTATS