skip to main content

Title: Theoretical study of the thermodynamic properties, phase transition wave, and phase transition velocity for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

We develop a phonon-electron free energy model to study the thermodynamic properties and phase transitions of δ-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The bulk modulus, thermal expansion coefficient, specific heat, Hugoniot curve, and phase transition curve are calculated in wide temperature and pressure ranges. The results are in agreement with the available experiments at zero pressure, and are reasonable predictions at high pressure for the lack of experiment. Two kinds of phase transition waves are investigated. We find the velocity of shock-induced phase transition wave is between 3400 m/s and 4700 m/s, and the velocity of self-sustaining phase transition wave is between 1300 m/s and 1900 m/s.
Authors:
 [1] ;  [1] ;  [2]
  1. National Laboratory for Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22489518
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 118; Journal Issue: 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIAGRAMS; FORECASTING; FREE ENERGY; PHASE TRANSFORMATIONS; PHONONS; SPECIFIC HEAT; THERMAL EXPANSION