skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning a Schottky barrier of epitaxial graphene/4H-SiC (0001) by hydrogen intercalation

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4941229· OSTI ID:22489394

We report the electron transport properties of epitaxial graphene (EG) grown on 4H-SiC (0001) by low energy electron-beam irradiation. As-grown EG (AEG) on SiC interface exhibits rectifying current-voltage characteristics with a low Schottky barrier (SB) of 0.55 ± 0.05 eV and high reverse current leakage. The SB of AEG/SiC junction is extremely impeded by the Fermi level pinning (FLP) above the Dirac point due to charged states at the interface. Nevertheless, a gentle hydrogen intercalation at 900 °C enables the alleviation of both FLP and carrier scattering owing to the saturation of dangling bonds as evidenced by the enhancement of SB (0.75 ± 0.05 eV) and high electron mobility well excess of 6000 cm{sup 2} V{sup −1} s{sup −1}.

OSTI ID:
22489394
Journal Information:
Applied Physics Letters, Vol. 108, Issue 5; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English