skip to main content

Title: Manipulating fluorescence color and intensity with regular metal nanoparticle-based composite materials

This paper first studies the role of structural parameters of ordered metal nanoparticle-based composites in the modification of the spectra and intensity of directional emission from organic molecules. It then investigates the possibilities of white light generation via color conversion using two materials, one emitting in the green and the other one in the red spectral region. The structures under study exhibit enhanced emission within small solid angle in the forward direction due to excitation of the quasiguided modes. These modes modify the angle-dependent local photon density of states and, thus, result in efficient directional outcoupling of radiation.
Authors:
 [1]
  1. Centre Interdisciplinaire de Nanoscience de Marseille (CINaM, UPR 3118 CNRS), Aix-Marseille University, Campus de Luminy, Case 913, 13288 Marseille, France and Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty (Kazakhstan)
Publication Date:
OSTI Identifier:
22489391
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 108; Journal Issue: 5; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COLOR; COMPOSITE MATERIALS; DENSITY OF STATES; EXCITATION; FLUORESCENCE; METALS; MODIFICATIONS; MOLECULES; PHOTONS; SPECTRA; VISIBLE RADIATION