skip to main content

Title: Utilizing self-assembled-monolayer-based gate dielectrics to fabricate molybdenum disulfide field-effect transistors

In this study, we apply self-assembled-monolayer (SAM)-based gate dielectrics to the fabrication of molybdenum disulfide (MoS{sub 2}) field-effect transistors. A simple fabrication process involving the selective formation of a SAM on metal oxides in conjunction with the dry transfer of MoS{sub 2} flakes was established. A subthreshold slope (SS) of 69 mV/dec and no hysteresis were demonstrated with the ultrathin SAM-based gate dielectrics accompanied by a low gate leakage current. The small SS and no hysteresis indicate the superior interfacial properties of the MoS{sub 2}/SAM structure. Cross-sectional transmission electron microscopy revealed a sharp and abrupt interface of the MoS{sub 2}/SAM structure. The SAM-based gate dielectrics are found to be applicable to the fabrication of low-voltage MoS{sub 2} field-effect transistors and can also be extended to various layered semiconductor materials. This study opens up intriguing possibilities of SAM-based gate dielectrics in functional electronic devices.
Authors:
;  [1]
  1. Quantum Nanoelectronics Research Center (QNERC), Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)
Publication Date:
OSTI Identifier:
22489345
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 108; Journal Issue: 4; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIELECTRIC MATERIALS; ELECTRIC POTENTIAL; ELECTRONIC EQUIPMENT; FABRICATION; FIELD EFFECT TRANSISTORS; INTERFACES; LEAKAGE CURRENT; METALS; MOLYBDENUM SULFIDES; OXIDES; SEMICONDUCTOR MATERIALS; TRANSMISSION ELECTRON MICROSCOPY