skip to main content

Title: Micromechanical measurement of beating patterns in the quantum oscillatory chemical potential of InGaAs quantum wells due to spin-orbit coupling

The quantum oscillatory magnetization M(B) and chemical potential μ(B) of a two-dimensional (2D) electron system provide important and complementary information about its ground state energy at low temperature T. We developed a technique that provides both quantities in the same cool-down process via a decoupled static operation and resonant excitation of a micromechanical cantilever. On InGaAs/InP heterostructures, we observed beating patterns in both M(B) and μ(B) attributed to spin-orbit interaction. A significantly enhanced sensitivity in μ enabled us to extract Rashba and Dresselhaus parameters with high accuracy. The technique is powerful for detailed investigations on the electronic properties of 2D materials.
Authors:
;  [1] ;  [2] ; ;  [3] ;  [1] ;  [4]
  1. Lehrstuhl für Physik funktionaler Schichtsysteme, Physik Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching b. München (Germany)
  2. Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Jungiusstr. 11, D-20355 Hamburg (Germany)
  3. Peter Grünberg Institut (PGI-9) and JARA-FIT Jülich-Aachen Research Alliance, Forschungszentrum Jülich, D-52425 Jülich (Germany)
  4. (LMGN), Institute of Materials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)
Publication Date:
OSTI Identifier:
22489199
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 9; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; EXCITATION; GALLIUM ARSENIDES; GROUND STATES; INDIUM ARSENIDES; INDIUM PHOSPHIDES; L-S COUPLING; MAGNETIZATION; MATERIALS; POTENTIALS; QUANTUM WELLS; SENSITIVITY; TWO-DIMENSIONAL SYSTEMS