skip to main content

Title: Plasmon-induced dynamics of H{sub 2} splitting on a silver atomic chain

Localized surface plasmon resonances (LSPR) supported in metal nanostructures can be efficiently harnessed to drive photocatalytic reactions, whose atomic scale mechanism remains a challenge. Here, real-time dynamics of H{sub 2} photosplitting on a linear silver atomic chain, upon exposure to femtosecond laser pulses, has been investigated using time-dependent density functional theory. The wavelength dependent H{sub 2} splitting process is strongly coupled to LSPR excitation in silver chain. We identify that hot electrons produced in the silver chain by plasmon excitation are transferred to the antibonding state of the adsorbed H{sub 2} and trigger H{sub 2} dissociation, consistent with experimental observations. Increasing illumination intensity and the length of atomic chain promote H{sub 2} splitting, thanks to stronger LSPR. Dynamic electronic response can be quantitatively described within the present approach, providing insights towards a complete fundamental understanding on plasmon-induced chemical reactions at the microscopic scale.
Authors:
; ; ; ;  [1]
  1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22489171
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHEMICAL REACTIONS; DENSITY FUNCTIONAL METHOD; ELECTRONS; EXCITATION; HYDROGEN; LENGTH; NANOSTRUCTURES; PHOTOCATALYSIS; SILVER; TIME DEPENDENCE; WAVELENGTHS