skip to main content

SciTech ConnectSciTech Connect

Title: InGaN based micro light emitting diodes featuring a buried GaN tunnel junction

GaN tunnel junctions (TJs) are grown by ammonia molecular beam epitaxy. High doping levels are achieved with a net acceptor concentration close to ∼10{sup 20 }cm{sup −3}, thanks to the low growth temperature. This allows for the realization of p-n junctions with ultrathin depletion width enabling efficient interband tunneling. n-p-n structures featuring such a TJ exhibit low leakage current densities, e.g., <5 × 10{sup −5} A cm{sup −2} at reverse bias of 10 V. Under forward bias, the voltage is 3.3 V and 4.8 V for current densities of 20 A cm{sup −2} and 2000 A cm{sup −2}, respectively. The specific series resistance of the whole device is 3.7 × 10{sup −4} Ω cm{sup 2}. Then micro-light emitting diodes (μ-LEDs) featuring buried TJs are fabricated. Excellent current confinement is demonstrated together with homogeneous electrical injection, as seen on electroluminescence mapping. Finally, the I-V characteristics of μ-LEDs with various diameters point out the role of the access resistance at the current aperture edge.
Authors:
; ;  [1]
  1. ICMP, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)
Publication Date:
OSTI Identifier:
22489048
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 5; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMMONIA; APERTURES; DENSITY; ELECTRIC CONDUCTIVITY; ELECTROLUMINESCENCE; GALLIUM NITRIDES; LEAKAGE CURRENT; LIGHT EMITTING DIODES; MOLECULAR BEAM EPITAXY; P-N JUNCTIONS; TUNNEL EFFECT