skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of scan rate on the corrosion behavior SS 304 stainless steel in the nanofluid measured by Tafel polarization methods

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.4930715· OSTI ID:22488930
 [1]
  1. PSTNT-BATAN Jl. Tamansari 71 Bandung 40132, Indonesia, djokohp@batan.go.id (Indonesia)

The Effects of scan rate on the Tafel polarization curve that is obtained to determine corrosion rate are conducted. The tafel polarization curves are obtained at different scan rates for Stainless Steel 304 in nanofluids contain 0.01 gpl nano particle ZrO{sub 2}. The corrosion stainless steel in nanofluid contains adm+0.01 gpl ZrO{sub 2} nanoparticles at different scan rate was performed by Tafel polarization. The results show that according corrosion potential examination of the stainless steel in nanofluid media 0.01gpl ZrO{sub 2} nanoparticle was actively corroded. The value of cathodic Tafel slope stainless steel in nanofluid at different scan rate relatively unchanged after polarization testing. Mean while the value of anodic Tafel slope stainless steel in nanofluid increase at different scan rate. The results of Tafel polarization technique show that corrosion rate of stainless steel in nanofluid increase with increasing scan rate. X ray diffraction examination of stainless steel after Tafel polarization depict that γ Fe phase is major phase in the surface of alloy.

OSTI ID:
22488930
Journal Information:
AIP Conference Proceedings, Vol. 1677, Issue 1; Conference: 5. international conference on mathematics and natural sciences, Bandung (Indonesia), 2-3 Nov 2014; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English