skip to main content

SciTech ConnectSciTech Connect

Title: Transport properties of alkali metal doped fullerides

We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.
Authors:
;  [1]
  1. School of studies in Physics, Vikram University, Ujjain (M.P) India (India)
Publication Date:
OSTI Identifier:
22488675
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1670; Journal Issue: 1; Conference: EIPT-2015: International conference on emerging interfaces of plasma science and technology, Ujjain (India), 9-10 Mar 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ALKALI METALS; ATOMS; CLATHRATES; COMPARATIVE EVALUATIONS; DENSITY OF STATES; DOPED MATERIALS; ELECTRON-PHONON COUPLING; ELECTRONS; EXPANSION; FULLERENES; MOLECULAR ORBITAL METHOD; PHONONS; RANDOM PHASE APPROXIMATION; SUPERCONDUCTIVITY; TRANSITION TEMPERATURE