skip to main content

Title: Infra-red parametric generation: Phase mismatch condition

An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.
Authors:
; ;  [1]
  1. School of Studies in Physics, Vikram University, Ujjain (M.P.) India-456010 (India)
Publication Date:
OSTI Identifier:
22488651
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Conference Proceedings; Journal Volume: 1670; Journal Issue: 1; Conference: EIPT-2015: International conference on emerging interfaces of plasma science and technology, Ujjain (India), 9-10 Mar 2015; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CARBON DIOXIDE LASERS; COHERENCE LENGTH; CONCENTRATION RATIO; CURRENT DENSITY; DOPED MATERIALS; INDIUM ANTIMONIDES; LASER RADIATION; NONLINEAR PROBLEMS; PIEZOELECTRICITY; POLARIZATION; PULSED IRRADIATION; SEMICONDUCTOR MATERIALS; SOLID-STATE PLASMA