skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis of magnetic and upconversion nanocapsules as multifunctional drug delivery system

Multifunctional hollow nanocapsules with magnetic and upconversion luminescence properties were synthesized. Hollow Fe{sub 3}O{sub 4}@SiO{sub 2} was firstly prepared by using rodlike β-FeOOH as the template followed by silica coating, calcinations and reduction. Then Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules (FeSiUCNP) were synthesized by the hydrothermal transformation of the Y(Yb{sup 3+}, Er{sup 3+})(OH)CO{sub 3} (YOC) deposited onto the surface of nanocapsules through a urea-assisted homogeneous precipitation method. The hollow nanocapsules with porous structure provide space and entrance for the drug molecules. Due to the outside shell of α-NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+}, the nanomaterial shows upconverting red emission upon 980 nm NIR-light excitation. Moreover, the nanocomposites with hollow magnetite core exhibit a high relaxivity with r{sub 2} value of 183 mM{sup −1} s{sup −1}, which reveal the potential as T{sub 2}-weighted contrast agents for magnetic resonance imaging (MRI). The as-prepared nanocapsules can be performed as anti-cancer drug carriers for investigation of drug loading/release properties, which demonstrated a sustained drug release pattern and a comparable cytotoxicity with free doxorubicin (DOX). The multifunctional nanocapsules incorporated upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities have great potential for theranostic applications in cancer treatment. - Graphical abstract: Multifunctional hollowmore » nanocapsules with upconverting luminescence, T{sub 2}-weighted MRI imaging and drug targeting delivery modalities were synthesized for cancer treatment. - Highlights: • Multifunctional porous Fe{sub 3}O{sub 4}@SiO{sub 2}@α-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} nanocapsules were synthesized. • The nanocapsules show upconverting red emission upon 980 nm NIR-light excitation. • The nanocapsules exihibit potential as T{sub 2}-weighted contrast agents for MRI. • The DOX loaded nanocapsules demonstrated a comparable cytotoxicity with free DOX.« less
Authors:
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22486779
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 229; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CALCINATION; CARBONATES; CONTRAST MEDIA; DELIVERY; DOXORUBICIN; ERBIUM IONS; EXCITATION; IRON OXIDES; LUMINESCENCE; NANOCOMPOSITES; NEOPLASMS; NMR IMAGING; POROUS MATERIALS; REDUCTION; SILICON OXIDES; SYNTHESIS; TOXICITY; UREA; VISIBLE RADIATION; YTTERBIUM IONS