skip to main content

Title: Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta{sub 3}N{sub 5}

Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta{sub 3}N{sub 5}), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta{sub 3}N{sub 5} were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta{sub 3}N{sub 5} is present in terms of dielectric constant and effective masses. - Graphical abstract: Detailed investigation has been conducted from combined experimental and theoretical approaches on Raman and IR spectroscopies, electronic structures,more » dielectric constants and effective masses of TaON and Ta{sub 3}N{sub 5}. - Highlights: • Crystal structures of TaON and Ta{sub 3}N{sub 5} are discussed based on XRD and DFT calculation. • Raman and IR spectra of TaON and Ta{sub 3}N{sub 5} materials are measured and computed by DFPT method. • Optoelectronic properties of TaON and Ta{sub 3}N{sub 5} are discussed. • Dielectric constant and effective masses of TaON and Ta{sub 3}N{sub 5} are calculated.« less
Authors:
;  [1] ;  [2] ;  [1] ;  [1]
  1. Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 Saudi Arabia (Saudi Arabia)
  2. Solar and Photovoltaic Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)
Publication Date:
OSTI Identifier:
22486768
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 229; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANISOTROPY; CORRELATIONS; CRYSTAL STRUCTURE; DENSITY FUNCTIONAL METHOD; EFFECTIVE MASS; ELECTRONIC STRUCTURE; FOURIER TRANSFORMATION; HOLES; INFRARED SPECTRA; PERMITTIVITY; RAMAN SPECTRA; TANTALUM NITRIDES; TANTALUM OXIDES; TENSORS; X-RAY DIFFRACTION