skip to main content

Title: Metal–organic frameworks assembled from lanthanide and 2,5-pyridinedicaboxylate with cubane-like [Ln{sub 4}(OH){sub 4}] building units

Lanthanide–organic frameworks based on 2,5-pyridinedicaboxylate (25p) ligand, formulated as [Yb{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pYb), [Y{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (25pY-1) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] (25pY-2), have been obtained as single phases under hydrothermal conditions. 25pYb and 25pY-1 are isostructural, and crystallize in the triclinic space group, P-1, with a=8.6075(5) Å, b=14.8478(7) Å, c=15.9164(9) Å, α=86.277(4)°, β=80.196(5)°, γ=81.785(4)°, and a=8.7166(6) Å, b=14.966(1) Å, c=15.966(1) Å, α=86.260(6)°, β=80.036(6)°, γ=81.599(6)°, respectively. 25pY-2 crystallizes in the monoclinic space group, P2{sub 1}/c, with a=24.9117(17) Å, b=13.7340(8) Å, c=14.3385(10) Å, β=100.551(7)°. 25pYb and 25pY-2 have been structurally characterized by single-crystal X-ray diffraction. The 25pYb structure is based on tetranuclear cubane-like [Yb{sub 4}(OH){sub 4}]{sup 8+} clusters, which are interconnected to eight neighbouring clusters through teen surrounding 25p ligands leading to neutral 3D framework, while the structure of 25pY-2 is based on two independent cuban-like [Y{sub 4}(OH){sub 4}]{sup 8+} clusters, which are joined together through Y1 cation leading to the formation of hexanuclear [Y{sub 6}(OH){sub 8}]{sup 10+} clusters, which in turn are joined via Y2 cation resulting in infinite inorganic chain extending along c-axis, and each chain is interconnected to six adjacent chains through 25p ligands leading finally to 3Dmore » framework. The luminescence properties of Eu{sup 3+} and Tb{sup 3+} doped 25pY-1 and 25pY-2 compounds have also been investigated. All materials has been characterized by powder X-ray diffraction, thermal analyses (TG–SDTA–MS), FTIR spectroscopy, C–H–N elemental analysis, scanning electron microscopy (SEM-EDX), and powder X-ray thermodiffraction. - Graphical abstract: Nowadays, lanthanide–organic frameworks (LOFs) attract tremendous attention due to the unique characteristic of lanthanide cations, such as variable coordination numbers and geometries which often lead to novel complex structures, and also to their magnetic and photoluminescence properties. Herein, three LOFs formulated as [Ln{sub 4}(OH){sub 4}(25p){sub 4}(H{sub 2}O){sub 3}]·H{sub 2}O (Ln=Y, Yb) and [Y{sub 6}(OH){sub 8}(25p){sub 5}(H{sub 2}O){sub 2}] have been obtained by hydrothermal method and characterized, and the photoluminescence properties of the Eu and Tb doped compounds are discussed. - Highlights: • Three novel LnOFs has been synthesized and characterized. • Crystal structures are based on tetranuclear cuban-like [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pYb and 25pY-1 are based on isolated [Ln{sub 4}(OH){sub 4}]{sup 8+} clusters. • 25pY-2 is based on infinite inorganic chains built up from [Y{sub 4}(OH){sub 4}]{sup 8+} clusters. • Photoluminescence studies show strong red and green light emissions.« less
Authors:
 [1] ;  [1] ;  [2] ; ; ;  [1]
  1. Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, University of Oviedo—CINN, Oviedo 33006 (Spain)
  2. (Spain)
Publication Date:
OSTI Identifier:
22486765
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 229; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION SPECTROSCOPY; DOPED MATERIALS; EUROPIUM IONS; FOURIER TRANSFORMATION; HYDRATES; HYDROTHERMAL SYNTHESIS; INFRARED SPECTRA; LATTICE PARAMETERS; LIGANDS; MONOCLINIC LATTICES; MONOCRYSTALS; PHOTOLUMINESCENCE; POWDERS; PYRIDINES; SCANNING ELECTRON MICROSCOPY; TERBIUM IONS; THERMAL ANALYSIS; X-RAY DIFFRACTION; YTTERBIUM HYDROXIDES