skip to main content

SciTech ConnectSciTech Connect

Title: Microwave sol–gel synthesis and upconversion photoluminescence properties of CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with incommensurately modulated structure

CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method. The crystal structure of CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} tungstates have been refined, and upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a well crystallized morphology. Under the excitation at 980 nm, CaGd{sub 2}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} particles exhibited a strong 525-nm and a weak 550-nm emission bands in the green region and a very weak 655-nm emission band in the red region. The Raman spectrum of undoped CaGd{sub 2}(WO{sub 4}){sub 4} revealed about 12 narrow lines. The strongest band observed at 903 cm{sup −1} was assigned to the ν{sub 1} symmetric stretching vibration of WO{sub 4} tetrahedrons. The spectra of the samples doped with Er and Yb obtained under the 514.5 nm excitation were dominated by Er{sup 3+} luminescence preventing the recording of these samples Raman spectra. Concentration quenching of the erbium luminescence at {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition is weak in the range of erbiummore » doping level x{sub Er}=0.05–0.2, while, for transition {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}, the signs of concentration quenching become pronounced at x{sub Er}=0.2. - Graphical abstract: CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors with the doping concentrations of Er{sup 3+} and Yb{sup 3+} (x=Er{sup 3+}+Yb{sup 3+}, Er{sup 3+}=0.05, 0.1, 0.2 and Yb{sup 3+}=0.2, 0.45) have been successfully synthesized by the microwave sol–gel method and the crystal structure refinement, and upconversion photoluminescence properties have been investigated. - Highlights: • CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} phosphors have been synthesized by the microwave sol–gel method. • The crystal structure of CaGd{sub 2−x}(WO{sub 4}){sub 4}:Er{sup 3+}/Yb{sup 3+} tungstates have been refined. • The upconversion photoluminescence properties have been investigated.« less
Authors:
 [1] ;  [2] ;  [3] ;  [4] ;  [3] ;  [5] ;  [3] ;  [6] ;  [3] ;  [3]
  1. Department of Advanced Materials Science & Engineering, Hanseo University, Seosan 356-706 (Korea, Republic of)
  2. Laboratory of Coherent Optics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation)
  3. (Russian Federation)
  4. Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation)
  5. Department of Photonics and Laser Technologies, Siberian Federal University, Krasnoyarsk 660079 (Russian Federation)
  6. Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)
Publication Date:
OSTI Identifier:
22486732
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 228; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CALCIUM COMPOUNDS; CONCENTRATION RATIO; CRYSTAL STRUCTURE; DOPED MATERIALS; EMISSION SPECTROSCOPY; ERBIUM IONS; EXCITATION; GADOLINIUM COMPOUNDS; HEAT TREATMENTS; MICROWAVE RADIATION; MORPHOLOGY; PHOSPHORS; PHOTOLUMINESCENCE; RAMAN SPECTRA; SOL-GEL PROCESS; SYNTHESIS; TUNGSTATES; X-RAY DIFFRACTION; YTTERBIUM IONS