skip to main content

SciTech ConnectSciTech Connect

Title: One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis

Here we report a novel synthetic pathway for preparation of Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology by using a two dimensional Cu–melamine supramolecular network as both sacrificial template and precursor. The specific surface area of Cu-g-C{sub 3}N{sub 4} is 40.86 m{sup 2} g{sup −1}, which is more than 7 times larger than that of pure g-C{sub 3}N{sub 4}. Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region and expanded the absorption to the near-infrared region. The uniform nanosheet morphology, higher surface area and strong visible-light absorption have enabled Cu-g-C{sub 3}N{sub 4} exhibiting enhanced visible light photocatalytic activity for the photo-degradation of methylene blue (MB). The results indicate that metal–melamine supramolecular network can be promising precursors for the one step preparation of efficient metal-doped g-C{sub 3}N{sub 4} photocatalysts. - Graphical abstract: Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was fabricated via a simple one step preparation by using a two dimensional Cu–melamine supra-molecular network as both sacrificial template and precursor. - Highlights: • Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was prepared. • Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • Cu-g-C{sub 3}N{sub 4} exhibitsmore » enhanced visible light photocatalytic activity.« less
Authors:
 [1] ;  [2] ; ;  [1] ; ;  [2] ;  [1] ;  [2] ;  [1] ;
  1. The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
  2. State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027 (China)
Publication Date:
OSTI Identifier:
22486720
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 228; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ABSORPTION; CARBON NITRIDES; COPPER COMPOUNDS; DOPED MATERIALS; GRAPHITE; HEATING; MELAMINE; METHYLENE BLUE; MORPHOLOGY; NANOSTRUCTURES; PHOTOCATALYSIS; SPECIFIC SURFACE AREA; SYNTHESIS; TWO-DIMENSIONAL SYSTEMS; VISIBLE RADIATION