skip to main content

Title: Prediction of novel hard phases of Si{sub 3}N{sub 4}: First-principles calculations

Exploration of novel hard metastable phases of silicon nitride was performed using a recently developed particle-swarm optimization method within the CALYPSO software package. Three potential hard metastable phases of t-Si{sub 3}N{sub 4}, m-Si{sub 3}N{sub 4}, and o-Si{sub 3}N{sub 4} were predicted. These phases are mechanically and dynamically stable at ambient pressure based on their elastic constants and phonon dispersions. t-Si{sub 3}N{sub 4} and m-Si{sub 3}N{sub 4} exhibit lower energies than γ-Si{sub 3}N{sub 4} at pressures below 2.5 GPa and 2.9 GPa, respectively, which promise that the formers could be obtained by quenching from γ-Si{sub 3}N{sub 4}. o-Si{sub 3}N{sub 4} is a better high-pressure metastable phase than CaTi{sub 2}O{sub 4}-type Si{sub 3}N{sub 4} proposed by Tatsumi et al. and it can come from the transition of γ-Si{sub 3}N{sub 4} under 198 GPa. The theoretical band gaps of t-Si{sub 3}N{sub 4}, m-Si{sub 3}N{sub 4}, and o-Si{sub 3}N{sub 4} at ambient pressure were 3.15 eV, 3.90 eV, and 3.36 eV, respectively. At ambient pressure, the Vickers hardness values of t-Si{sub 3}N{sub 4} (32.6 GPa), m-Si{sub 3}N{sub 4} (31.5 GPa), and o-Si{sub 3}N{sub 4} (36.1 GPa) are comparable to β-Si{sub 3}N{sub 4} and γ-Si{sub 3}N{sub 4}. With the pressure increasing, t-Si{sub 3}N{sub 4}, m-Si{submore » 3}N{sub 4}, and o-Si{sub 3}N{sub 4} will change from the brittle to ductile state at about 15.7 GPa, 7.3 GPa and 28.9 GPa, respectively. - Graphical abstract: This figure shows the crystal structures of three Si{sub 3}N{sub 4} predicted in this manuscript, and left to right: t-Si{sub 3}N{sub 4}, m-Si{sub 3}N{sub 4} and o-Si{sub 3}N{sub 4}. - Highlights: • We explored three metastable phases of Si{sub 3}N{sub 4} — t-Si{sub 3}N{sub 4}, m-Si{sub 3}N{sub 4}, and o-Si{sub 3}N{sub 4}. • The enthalpies of t and m- are much lower than that of γ at ambient pressure. • ois one further high pressure phase than γ. • o-Si{sub 3}N{sub 4} is the most hardest phase in Si{sub 3}N4 system. • Increasing pressure will change them from brittle to ductile state.« less
Authors:
; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22486716
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 228; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BRITTLE-DUCTILE TRANSITIONS; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; CRYSTAL STRUCTURE; ENERGY GAP; ENTHALPY; PARTICLES; PHASE STABILITY; PHASE STUDIES; PHASE TRANSFORMATIONS; PHONONS; PRESSURE DEPENDENCE; QUENCHING; SILICON NITRIDES; VICKERS HARDNESS