skip to main content

SciTech ConnectSciTech Connect

Title: SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulated luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison showsmore » that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less
Authors:
; ; ; ;  [1]
  1. Univ Florida, Jacksonville Beach, FL (United States)
Publication Date:
OSTI Identifier:
22486628
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 42; Journal Issue: 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; CHILDREN; COMPUTERIZED TOMOGRAPHY; DOSEMETERS; IMAGES; LUMINESCENCE; PATIENTS; PEDIATRICS; PHANTOMS; RADIATION DOSES; SKIN; VERTEBRAE