skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-C-210-07: Assessment of Intra-/Inter-Fractional Internal Tumor and Organ Movement in Radiotherapy of Head and Neck Cancer Using On-Board Cine MRI

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4923852· OSTI ID:22486593
; ; ; ; ; ; ; ; ; ;  [1]; ;  [2];  [3];  [4]
  1. Washington University School of Medicine, Saint Louis, MO (United States)
  2. ViewRay Incorporated, Oakwood Village, OH (United States)
  3. University of Rouen, QuantIF - EA 4108 LITIS, Rouen (France)
  4. University of California Los Angeles, Los Angeles, CA (United States)

Purpose: Head and neck (H&N) internal organ motion has previously been determined with low frequency and temporary nature based on population-based pre- and post-treatment studies. Using immobilization masks and adding a 4–6 mm planning-tumor-volume margin, geometric uncertainties of patients are routinely considered clinically inconsequential in H&N radiotherapy. Using the first commercially-available MR-IGRT system, we conducted the first quantitative study on inter-patient, intra- and inter-fractional H&N internal motion patterns to evaluate the necessity of individualized asymmetric internal margins. Methods: Ninety cine sagittal MR image sequences were acquired during the entire treatment course (6–7 weeks) of three H&N cancer patients using the ViewRay™ MR-IGRT system. The images were 5 mm thick and acquired at 4 frames/per second. One of the patients had a tracheostomy tube. The cross-sectional H&N airway (nasopharynx, oropharynx, and laryngopharynx portions) movement was analyzed comprehensively using in-house developed motion detection software. Results: Large inter-patient variations of swallowing frequency (0–1 times/per fraction), swallowing duration (1–3 seconds), and pharyngeal cross-sectional area (238–2516 mm2) were observed. Extensive pharyngeal motion occurred during swallowing, while nonzero and periodic change of airway geometry was observed in resting. For patient 1 with tracheostomy tube replacement, 30.3%, 30.0%, 48.7% and 0.3% of total frames showed ≥ 4 mm displacements in the anterior, posterior, inferior, and superior airway boundaries, respectively; similarly, (5.7%, 0.0%, 0.0%, 0.3%) and (23.3%, 0.0%, 35.7%, 1.7%) occurred for patients 2 and 3. Area overlapping coefficients with respect to the first frame were 76.3+/−6.4%, 90.3+/−0.6%, and 92.3+/−1.2% for the three patients, respectively. Conclusion: Both the resting and swallowing motions varied in frequency and amplitude among the patients and across fractions of a patient’s treatment. Patients receiving surgery that alters their respiratory and swallowing behavior can have significant intra-fractional internal motion. Patient-specific organ/tumor motion analysis may yield individualized asymmetric internal margins and improve the therapeutic ratio.

OSTI ID:
22486593
Journal Information:
Medical Physics, Vol. 42, Issue 6; Other Information: (c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English