skip to main content

SciTech ConnectSciTech Connect

Title: Solitary waves in a self-gravitating opposite polarity dust-plasma medium

A more general and realistic dusty plasma model, namely, self-gravitating opposite polarity dust-plasma system (containing inertial positive and negative dust, and inertialess ions and electrons following Maxwellian distribution) is considered. The possibility for the formation of solitary electrostatic and self-gravitational potential structures in such a dust-plasma system is thoroughly examined. The standard reductive perturbation method, which is valid for small but finite amplitude solitary structures, is employed. The parametric regimes for the existence of solitary electrostatic and self-gravitational potential structures, and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component and self-gravitational field. The applications of the present investigation in different space dusty plasma environments and laboratory dusty plasma devices are briefly discussed.
Authors:
;  [1]
  1. Institut für Theoretische Physik, Lehrstuhl IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany)
Publication Date:
OSTI Identifier:
22486494
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMPLITUDES; BOLTZMANN STATISTICS; DUSTS; ELECTRONS; GRAVITATIONAL FIELDS; PERTURBATION THEORY; PLASMA; POLARIZATION; WAVE PROPAGATION