skip to main content

SciTech ConnectSciTech Connect

Title: Structural changes of small amplitude kinetic Alfvén solitary waves due to second-order corrections

The structural changes of kinetic Alfvén solitary waves (KASWs) due to higher-order terms are investigated. While the first-order differential equation for KASWs provides the dispersion relation for kinetic Alfvén waves, the second-order differential equation describes the structural changes of the solitary waves due to higher-order nonlinearity. The reductive perturbation method is used to obtain the second-order and third-order partial differential equations; then, Kodama and Taniuti's technique [J. Phys. Soc. Jpn. 45, 298 (1978)] is applied in order to remove the secularities in the third-order differential equations and derive a linear second-order inhomogeneous differential equation. The solution to this new second-order equation indicates that, as the amplitude increases, the hump-type Korteweg-de Vries solution is concentrated more around the center position of the soliton and that dip-type structures form near the two edges of the soliton. This result has a close relationship with the interpretation of the complex KASW structures observed in space with satellites.
Authors:
 [1]
  1. Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22486448
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ALFVEN WAVES; AMPLITUDES; CORRECTIONS; DISPERSION RELATIONS; INTERSTELLAR SPACE; KORTEWEG-DE VRIES EQUATION; MATHEMATICAL SOLUTIONS; NONLINEAR PROBLEMS; PERTURBATION THEORY; SATELLITES; SOLITONS