skip to main content

Title: Sheath energy transmission in a collisional plasma with collisionless sheath

Sheath energy transmission governs the plasma energy exhaust onto a material surface. The ion channel is dominated by convection, but the electron channel has a significant thermal conduction component, which is dominated by the Knudsen layer effect in the presence of an absorbing wall. First-principle kinetic simulations reveal a robustly supersonic sheath entry flow. The ion sheath energy transmission and the sheath potential are accurately predicted by a sheath model of truncated bi-Maxwellian electron distribution. The electron energy transmission is further enhanced by a parallel heat flux of the perpendicular degrees of freedom.
Authors:
;  [1]
  1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
Publication Date:
OSTI Identifier:
22486402
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 22; Journal Issue: 10; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BOLTZMANN STATISTICS; COLLISIONAL PLASMA; CONVECTION; DEGREES OF FREEDOM; ELECTRONS; HEAT FLUX; LAYERS; PLASMA SHEATH; POWER TRANSMISSION; SIMULATION; SURFACES; THERMAL CONDUCTION