skip to main content

SciTech ConnectSciTech Connect

Title: Full information acquisition in piezoresponse force microscopy

The information flow from the tip-surface junction to the detector electronics during the piezoresponse force microscopy (PFM) imaging is explored using the recently developed general mode (G-mode) detection. Information-theory analysis suggests that G-mode PFM in the non-switching regime, close to the first resonance mode, contains a relatively small (100–150) number of components containing significant information. The first two primary components are similar to classical PFM images, suggesting that classical lock-in detection schemes provide high veracity information in this case. At the same time, a number of transient components exhibit contrast associated with surface topography, suggesting pathway to separate the two. The number of significant components increases considerably in the non-linear and switching regimes and approaching cantilever resonances, precluding the use of classical lock-in detection and necessitating the use of band excitation or G-mode detection schemes. The future prospects of full information imaging in scanning probe microscopy are discussed.
Authors:
; ; ;  [1]
  1. The Institute for Functional Imaging of Materials and the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
Publication Date:
OSTI Identifier:
22486314
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 26; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DETECTION; EXCITATION; INFORMATION THEORY; MICROSCOPY; NONLINEAR PROBLEMS; RESONANCE; SURFACES