skip to main content

Title: A miniaturized piezoelectric turbine with self-regulation for increased air speed range

This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic “plucking” of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.
Authors:
;  [1]
  1. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
Publication Date:
OSTI Identifier:
22486255
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 24; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AIR; MAGNETS; PIEZOELECTRICITY; ROTORS; SPRINGS; TURBINES; VELOCITY; WIND TUNNELS