skip to main content

Title: Modeling and de-embedding the interferometric scanning microwave microscopy by means of dopant profile calibration

This paper presents the full modeling and a methodology for de-embedding the interferometric scanning microwave microscopy measurements by means of dopant profile calibration. A Si calibration sample with different boron-doping level areas is used to that end. The analysis of the experimentally obtained S{sub 11} amplitudes based on the proposed model confirms the validity of the methodology. As a specific finding, changes in the tip radius between new and used tips have been clearly identified, leading to values for the effective tip radius in the range of 45 nm to 85 nm, respectively. Experimental results are also discussed in terms of the effective area concept, taking into consideration details related to the nature of tip-to-sample interaction.
Authors:
;  [1] ; ; ;  [2] ; ;  [3]
  1. National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), Via del Fosso del Cavaliere 100, 00133 Rome (Italy)
  2. Institut d'Electronique, de Microélectronique et de Nanotechnologie, CNRS UMR 8520/University of Lille 1, Avenue Poincaré, CS 60069, 59652 Villeneuve d'Ascq (France)
  3. Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France)
Publication Date:
OSTI Identifier:
22486162
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 22; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMPLITUDES; BORON; CALIBRATION; MICROSCOPY; MICROWAVE RADIATION; SIMULATION