skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiferromagnetic order competing with topological state in Ce{sub x}Bi{sub 2−x}Te{sub 3}

Journal Article · · Applied Physics Letters
DOI:https://doi.org/10.1063/1.4935120· OSTI ID:22486002
; ;  [1]; ; ; ;  [2]
  1. Institute of Physics, Johannes Gutenberg-University of Mainz, 55099 Mainz (Germany)
  2. J. Stefan Institute and University of Ljubljana, Jamova 39, SI-1000 Ljubljana (Slovenia)

The topological surface states in three-dimensional topological insulators are easily tuned by chemical doping, especially by magnetic impurities. We prepared single crystals of Ce{sub x}Bi{sub 2−x}Te{sub 3} with various x (=0.04, 0.06, 0.08, 0.10, and 0.12). The obtained crystals were characterized by X-ray diffraction and scanning electron microscopy. The magnetic susceptibility data revealed that the Ce atoms are well substituted for Bi into Bi{sub 2}Te{sub 3}. From the Curie-Weiss fits, we observed that the effective magnetic moments μ{sub eff} are close to 2.54 μ{sub B} for free Ce ion, and the paramagnetic Curie-Weiss temperatures θ{sub p} are negatively increased from 2.87 K to −59.3 K with increasing x. The magnetization data clearly showed antiferromagnetic orders around T{sub N} = 4.1 K for x ≥ 0.08, where θ{sub p} suddenly increases, and the electrical resistivity is simply metallic and the magnetoresistance is parabolic. Only for x = 0.06, exotic physical properties arising from the topological states were observed such as non-metallic behavior in the electrical resistivity and linear dependence of the magnetoresistance. Moreover, the carrier concentration of x = 0.06 is one order lower than that of x ≥ 0.08. These observations propose that the antiferromagnetic order is strongly competing with the topological state in Ce{sub x}Bi{sub 2−x}Te{sub 3}.

OSTI ID:
22486002
Journal Information:
Applied Physics Letters, Vol. 107, Issue 18; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0003-6951
Country of Publication:
United States
Language:
English