skip to main content

SciTech ConnectSciTech Connect

Title: Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.
Authors:
; ;  [1] ; ;  [2]
  1. Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr.15, 12489 Berlin (Germany)
  2. Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)
Publication Date:
OSTI Identifier:
22485984
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 18; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DESIGN; DIELECTRIC MATERIALS; EPITAXY; EXCITONS; LAYERS; MEV RANGE 10-100; ORGANIC SEMICONDUCTORS; PHOTONS; POLARONS; POLYMERS; QUANTUM WELLS; REFLECTIVITY; RESONANCE