skip to main content

Title: Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K

A very promising direction to improve the sensitivity of magnetometers based on superconducting quantum interference devices (SQUIDs) is to build a series-array of N non-interacting SQUIDs operating flux-coherently, because in this case their voltage modulation depth, ΔV, linearly scales with N whereas the white flux noise S{sub Φ}{sup 1/2} decreases as 1/N{sup 1/2}. Here, we report the realization of both these improvements in an advanced layout of very large SQUID arrays made of YBa{sub 2}Cu{sub 3}O{sub 7}. Specially designed with large area narrow flux focusers for increased field sensitivity and improved flux-coherency, our arrays have extremely low values for S{sub Φ}{sup 1/2} between (0.25 and 0.44) μΦ{sub 0}/Hz{sup 1/2} for temperatures in the range (77–83) K. In this respect, they outperform niobium/aluminium trilayer technology-based single-SQUIDs operating at 4.2 K. Moreover, with values for ΔV and transimpedance in the range of (10–17) mV and (0.3–2.5) kΩ, respectively, a direct connection to a low-noise room temperature amplifier is allowed, while matching for such readout is simplified and the available bandwidth is greatly increased. These landmark performances suggest such series SQUID arrays are ideal candidates to replace single-SQUIDs operating at 4.2 K in many applications.
Authors:
;  [1] ;  [2]
  1. Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom)
  2. School of Physics and Astronomy, Nottingham University, Nottingham NG7 2RD (United Kingdom)
Publication Date:
OSTI Identifier:
22485937
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 16; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALUMINIUM; AMPLIFIERS; DESIGN; ELECTRIC POTENTIAL; MAGNETOMETERS; MODULATION; NIOBIUM; PERFORMANCE; READOUT SYSTEMS; SENSITIVITY; SQUID DEVICES; TEMPERATURE RANGE 0273-0400 K