skip to main content

Title: Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF)

The bioconcentration factor (BCF) is an important bioaccumulation hazard assessment metric in many regulatory contexts. Its assessment is required by the REACH regulation (Registration, Evaluation, Authorization and Restriction of Chemicals) and by CLP (Classification, Labeling and Packaging). We challenged nine well-known and widely used BCF QSAR models against 851 compounds stored in an ad-hoc created database. The goodness of the regression analysis was assessed by considering the determination coefficient (R{sup 2}) and the Root Mean Square Error (RMSE); Cooper's statistics and Matthew's Correlation Coefficient (MCC) were calculated for all the thresholds relevant for regulatory purposes (i.e. 100 L/kg for Chemical Safety Assessment; 500 L/kg for Classification and Labeling; 2000 and 5000 L/kg for Persistent, Bioaccumulative and Toxic (PBT) and very Persistent, very Bioaccumulative (vPvB) assessment) to assess the classification, with particular attention to the models' ability to control the occurrence of false negatives. As a first step, statistical analysis was performed for the predictions of the entire dataset; R{sup 2}>0.70 was obtained using CORAL, T.E.S.T. and EPISuite Arnot–Gobas models. As classifiers, ACD and log P-based equations were the best in terms of sensitivity, ranging from 0.75 to 0.94. External compound predictions were carried out for the models that had theirmore » own training sets. CORAL model returned the best performance (R{sup 2}{sub ext}=0.59), followed by the EPISuite Meylan model (R{sup 2}{sub ext}=0.58). The latter gave also the highest sensitivity on external compounds with values from 0.55 to 0.85, depending on the thresholds. Statistics were also compiled for compounds falling into the models Applicability Domain (AD), giving better performances. In this respect, VEGA CAESAR was the best model in terms of regression (R{sup 2}=0.94) and classification (average sensitivity>0.80). This model also showed the best regression (R{sup 2}=0.85) and sensitivity (average>0.70) for new compounds in the AD but not present in the training set. However, no single optimal model exists and, thus, it would be wise a case-by-case assessment. Yet, integrating the wealth of information from multiple models remains the winner approach. - Highlights: • REACH encourages the use of in silico methods in the assessment of chemicals safety. • The performances of nine BCF models were evaluated on a benchmark database of 851 chemicals. • We compared the models on the basis of both regression and classification performance. • Statistics on chemicals out of the training set and/or within the applicability domain were compiled. • The results show that QSAR models are useful as weight-of-evidence in support to other methods.« less
 [1] ;  [2] ; ;  [1] ;  [1] ;  [2] ; ;  [3] ;  [1]
  1. Laboratory of Environmental Chemistry and Toxicology, IRCCS – Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano (Italy)
  2. (Italy)
  3. Dipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari (Italy)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Research; Journal Volume: 137; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States