skip to main content

SciTech ConnectSciTech Connect

Title: Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM{sub 2.5}) and PM{sub 2.5} constituents, PM ≤ 10 μm (PM{sub 10}), nitrogen oxides (NO{sub x}), carbon monoxide, sulfur dioxide (SO{sub 2}) and ozone (O{sub 3}) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO{sub X} (RR=1.09, 95% CI: 1.04, 1.13) and SO{sub 2} (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O{sub 3} was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO{sub x} and SO{submore » 2} preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O{sub 3} appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO{sub x} and SO{sub 2} before conception increased subsequent GDM risk. • NO{sub x} and SO{sub 2} exposure in the first seven weeks of pregnancy also increased GDM risk. • Early exposure to O{sub 3} reduced GDM risk but risk increased after 15 weeks gestation.« less
Authors:
 [1] ;  [1] ; ;  [1] ; ;  [2] ;  [3] ;  [4] ;  [1]
  1. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States)
  2. Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20892 (United States)
  3. Texas A&M University, Zachary Department of Civil Engineering, College Station, TX 77845 (United States)
  4. The EMMES Corporation, Rockville, MD 20852 (United States)
Publication Date:
OSTI Identifier:
22483280
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Research; Journal Volume: 137; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; AIR QUALITY; CARBON MONOXIDE; CONCENTRATION RATIO; DIABETES MELLITUS; HEALTH HAZARDS; HOSPITALS; NITRIC OXIDE; OZONE; PREGNANCY; SULFUR DIOXIDE; US EPA