skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chaos control of the brushless direct current motor using adaptive dynamic surface control based on neural network with the minimum weights

Journal Article · · Chaos (Woodbury, N. Y.)
DOI:https://doi.org/10.1063/1.4922839· OSTI ID:22483214
 [1];  [2];  [1]
  1. School of Automation, Chongqing University, Chongqing 400044 (China)
  2. Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021 (China)

This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.

OSTI ID:
22483214
Journal Information:
Chaos (Woodbury, N. Y.), Vol. 25, Issue 7; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1054-1500
Country of Publication:
United States
Language:
English

Similar Records

Chaos control for the output-constrained system by using adaptive dynamic surface technology and application to the brushless DC motor
Journal Article · Tue Dec 15 00:00:00 EST 2015 · AIP Advances · OSTI ID:22483214

A continually online-trained neural network controller for brushless DC motor drives
Journal Article · Sat Apr 01 00:00:00 EST 2000 · IEEE Transactions on Industry Applications (Institute of Electrical and Electronics Engineers) · OSTI ID:22483214

Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain
Journal Article · Mon Sep 01 00:00:00 EDT 2014 · Chaos (Woodbury, N. Y.) · OSTI ID:22483214