skip to main content

Title: Magneto-optical imaging technique for hostile environments: The ghost imaging approach

In this paper, we develop an approach to magneto optical imaging (MOI), applying a ghost imaging (GI) protocol to perform Faraday microscopy. MOI is of the utmost importance for the investigation of magnetic properties of material samples, through Weiss domains shape, dimension and dynamics analysis. Nevertheless, in some extreme conditions such as cryogenic temperatures or high magnetic field applications, there exists a lack of domain images due to the difficulty in creating an efficient imaging system in such environments. Here, we present an innovative MOI technique that separates the imaging optical path from the one illuminating the object. The technique is based on thermal light GI and exploits correlations between light beams to retrieve the image of magnetic domains. As a proof of principle, the proposed technique is applied to the Faraday magneto-optical observation of the remanence domain structure of an yttrium iron garnet sample.
Authors:
; ; ; ; ; ;  [1]
  1. INRIM, Strada delle Cacce 91, I-10135 Torino (Italy)
Publication Date:
OSTI Identifier:
22483120
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 106; Journal Issue: 26; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BEAMS; CORRELATIONS; DOMAIN STRUCTURE; FERRITE GARNETS; IMAGES; MAGNETIC FIELDS; MAGNETIC PROPERTIES; MICROSCOPY; SHAPE; YTTRIUM