skip to main content

SciTech ConnectSciTech Connect

Title: Recent performance of and plasma outage studies with the SNS H{sup −} source

Spallation Neutron Source ramps to higher power levels that can be sustained with high availability. The goal is 1.4 MW despite a compromised radio frequency quadrupole (RFQ), which requires higher radio frequency power than design levels to approach the nominal beam transmission. Unfortunately at higher power the RFQ often loses its thermal stability, a problem apparently enhanced by beam losses and high influxes of hydrogen. Delivering as much H{sup −} beam as possible with the least amount of hydrogen led to plasma outages. The root cause is the dense 1-ms long ∼55-kW 2-MHz plasma pulses reflecting ∼90% of the continuous ∼300 W, 13-MHz power, which was mitigated with a 4-ms filter for the reflected power signal and an outage resistant, slightly detuned 13-MHz match. Lowering the H{sub 2} gas also increased the H{sup −} beam current to ∼55 mA and increased the RFQ transmission by ∼7% (relative)
Authors:
; ; ; ; ; ;  [1]
  1. Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)
Publication Date:
OSTI Identifier:
22482960
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 87; Journal Issue: 2; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; BEAM CURRENTS; BEAMS; DESIGN; HYDROGEN; LOSSES; MHZ RANGE 01-100; NEUTRON SOURCES; OUTAGES; PERFORMANCE; PLASMA; RADIOWAVE RADIATION; SPALLATION