skip to main content

Title: Doping He droplets by laser ablation with a pulsed supersonic jet source

Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions). In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.
Authors:
; ; ; ;  [1]
  1. Physikalisches Institut, Universit├Ąt Freiburg, 79104 Freiburg (Germany)
Publication Date:
OSTI Identifier:
22482810
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 87; Journal Issue: 1; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ABLATION; DESIGN; DROPLETS; EFFICIENCY; FLUORESCENCE; HELIUM; JETS; LASERS; NOZZLES; OVENS; PULSES; SURFACE IONIZATION