skip to main content

SciTech ConnectSciTech Connect

Title: Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films

We have developed a complete instrument to perform direct, dry, and cost-effective lithography on conductive materials, based on localized electrical discharges, which avoids using masks or chemicals typical of conventional photolithography. The technique is considered fully compatible with substrate transport based systems, like roll-to-roll technology. The prototype is based on two piezo nano-steppers coupled to three linear micro-stages to cover a large scale operation from micrometers to centimeters. The operation mode consists of a spring probe biased at low DC voltage with respect to a grounded conductive layer. The tip slides on the target layer keeping contact with the material in room conditions, allowing continuous electric monitoring of the process, and also real-time tilt correction via software. The sliding tip leaves an insulating path (limited by the tip diameter) along the material, enabling to draw electrically insulated tracks and pads. The physical principle of operation is based in the natural self-limitation of the discharge due to material removal or insulation. The so produced electrical discharges are very fast, in the range of μs, so features may be performed at speeds of few cm/s, enabling scalability to large areas. The instrument has been tested on different conducting materials as gold, indiummore » tin oxide, and aluminum, allowing the fabrication of alphanumeric displays based on passive matrix of organic light emitting diodes without the use of masks or photoresists. We have verified that the highest potential is achieved on graphene, where no waste material is detected, producing excellent well defined edges. This allows manufacturing graphene micro-ribbons with a high aspect ratio up to 1200:1.« less
Authors:
; ;  [1]
  1. Departamento Teoría de la Señal y Comunicaciones, Sistemas Telemáticos y Computación, Escuela Técnica Superior de Ingeniería de Telecomunicación, Universidad Rey Juan Carlos, Fuenlabrada, Madrid 28943 (Spain)
Publication Date:
OSTI Identifier:
22482754
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 86; Journal Issue: 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ALUMINIUM; ASPECT RATIO; ELECTRIC DISCHARGES; EROSION; GOLD; GRAPHENE; INDIUM; LAYERS; LIGHT EMITTING DIODES; MANUFACTURING; MATERIALS; THIN FILMS; TIN OXIDES