skip to main content

Title: Measurements of high energy photons in Z-pinch experiments on primary test stand

High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10{sup 10} cm{sup −2} (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Authors:
; ; ; ; ; ; ; ; ; ;  [1]
  1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Sichuan, Mianyang 621900 (China)
Publication Date:
OSTI Identifier:
22482739
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 86; Journal Issue: 8; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; AMPLITUDES; CURRENTS; DESIGN; ELECTRONS; KEV RANGE 100-1000; PHOTONS; PULSE RISE TIME; PULSE SHAPERS; PULSES; SIGNALS; SOFT X RADIATION; THERMOLUMINESCENT DOSEMETERS; WAVE FORMS