skip to main content

Title: Evaporation-driven clustering of microscale pillars and lamellae

As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completely dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.
Authors:
; ;  [1]
  1. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22482491
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Fluids (1994); Journal Volume: 28; Journal Issue: 2; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COALESCENCE; DRYING; EVAPORATION; FILMS; LAMELLAE; LIQUIDS; MANUFACTURING; MICROSTRUCTURE; NANOSTRUCTURES; POLYMERS; SEMICONDUCTOR MATERIALS; TRANSIENTS