skip to main content

Title: Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.
Authors:
; ; ;  [1] ; ;  [2]
  1. Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)
  2. Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)
Publication Date:
OSTI Identifier:
22482276
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Reviews; Journal Volume: 2; Journal Issue: 4; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALUMINIUM OXIDES; FERROELECTRIC MATERIALS; HAFNIUM OXIDES; MOLECULAR BEAM EPITAXY; NANOSTRUCTURES; PEROVSKITE; PHYSICAL VAPOR DEPOSITION; PRECURSOR; SEMICONDUCTOR MATERIALS; SUBSTRATES; THICKNESS; THIN FILMS