skip to main content

Title: A triple quantum dot based nano-electromechanical memory device

Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.
Authors:
;  [1] ;  [2] ;  [2] ;  [1] ;  [2] ;  [2]
  1. Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
  2. (Israel)
Publication Date:
OSTI Identifier:
22482097
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EQUIPMENT; LIGANDS; MEMORY DEVICES; QUANTUM DOTS