skip to main content

Title: Nonlinear transport in ionic liquid gated strontium titanate nanowires

Measurements of the current-voltage (I–V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I–V characteristics exhibit a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scales as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I–V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport.
Authors:
;  [1]
  1. School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
Publication Date:
OSTI Identifier:
22482095
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 107; Journal Issue: 11; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ELECTRIC POTENTIAL; LIQUIDS; NANOWIRES; NONLINEAR PROBLEMS; QUANTUM DOTS; STRONTIUM TITANATES