skip to main content

Title: Local structure study of (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} thin films using x-ray absorption spectroscopy

The (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} (x = 0.06, 0.08, 0.15, and 0.20) films prepared by RF-magnetron sputtering were investigated by the combination of x-ray absorption spectroscopy (XAS) at Fe, Cu, and O K-edge. Although the Fe and O K-edge XAS spectra show that the Fe atoms substitute for the In sites of In{sub 2}O{sub 3} lattice for all the films, the Cu K-edge XAS spectra reveal that the codoped Cu atoms are separated to form the Cu metal clusters. After being annealed in air, the Fe atoms are still substitutionally incorporated into the In{sub 2}O{sub 3} lattice, while the Cu atoms form the CuO secondary phases. With the increase of Fe concentration, the bond length R{sub Fe-O} shortens and the Debye–Waller factor σ{sup 2}{sub Fe-O} increases in the first coordination shell of Fe, which are attributed to the relaxation of oxygen environment around the substitutional Fe ions. The forming of Cu relating secondary phases in the films is due to high ionization energy of Cu atoms, leading that the Cu atoms are energetically much harder to be oxidized to substitute for the In sites of In{sub 2}O{sub 3} lattice than Fe atoms. These results provide new experimental guidance in themore » preparation of the codoped In{sub 2}O{sub 3} based dilute magnetic oxides.« less
Authors:
; ; ; ; ;  [1] ;  [2]
  1. Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)
  2. Beijing Aerospace Institute for Metrology and Measurement Technology, Beijing 100076 (China)
Publication Date:
OSTI Identifier:
22479710
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 33; Journal Issue: 4; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION SPECTROSCOPY; ANNEALING; ATOMS; BOND LENGTHS; COPPER OXIDES; INDIUM OXIDES; MAGNETRONS; OXYGEN; RELAXATION; SPUTTERING; THIN FILMS; X-RAY SPECTROSCOPY