skip to main content

Title: Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Authors:
 [1]
  1. Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
Publication Date:
OSTI Identifier:
22479692
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 56; Journal Issue: 6; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CHAOS THEORY; CORRELATION FUNCTIONS; POLYNOMIALS; RANDOMNESS; S MATRIX; SCATTERING; SEMICLASSICAL APPROXIMATION; STATISTICS; T INVARIANCE; TIME DELAY