skip to main content

Title: Excitation of XPS spectra from nanoscaled particles by local generation of x-rays

In preliminary work, the authors have shown that use of an aluminum substrate to support a distribution of copper particles enables their characteristic photoelectrons to be observed within the Auger electron spectrum generated by an incident electron beam. This observation raises the possibility of the use of chemical shifts and the corresponding Auger parameter to identify the chemical states present on the surface of individual submicrometer particles within a mixture. In this context, the technique has an advantage in that, unlike conventional Auger electron spectroscopy, the electron beam does not dwell on the particle but on the substrate adjacent to it. Given the importance, for both medical and toxicological reasons, of the surface composition of such particles, the authors have continued to explore the potential of this development. In this contribution, the authors show that proximal excitation of x-rays is equally successful with magnesium substrates. In some regions of the x-ray photoelectron spectrum, the much larger Auger peaks generated by the electron beam can cause inconvenient clustering of Auger and photoelectron peaks. As in conventional x-ray photoelectron spectroscopy, the ability to switch between Al and Mg sources is useful in such situations. In this context, the authors have extended themore » studies to iron particles where the authors show that use of Al or Mg substrates, as necessary, can make a contribution to clear identification of individual components in the Fe 2p peaks. For this development in electron spectroscopy to achieve its full potential, it is necessary to optimize the beam conditions used to generate the local x-ray to give good selectivity of a given particle. Measurements made in support of this will be given. Of greater concern is a possible problem of local heating associated with x-ray generation. The authors continue to explore this problem and report some progress in minimizing heating of the particle while maintaining the particle selectivity that is central to this exciting development.« less
Authors:
;  [1]
  1. The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)
Publication Date:
OSTI Identifier:
22479643
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Vacuum Science and Technology. A, Vacuum, Surfaces and Films; Journal Volume: 33; Journal Issue: 5; Other Information: (c) 2015 American Vacuum Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AUGER ELECTRON SPECTROSCOPY; ELECTRON BEAMS; ELECTRON SPECTRA; EXCITATION; NANOSTRUCTURES; SUBSTRATES; X RADIATION; X-RAY PHOTOELECTRON SPECTROSCOPY