skip to main content

SciTech ConnectSciTech Connect

Title: Entropy production of doubly stochastic quantum channels

We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an application we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.
Authors:
 [1] ;  [2] ; ;  [1]
  1. Department of Mathematics, Technische Universität München, 85748 Garching (Germany)
  2. (Denmark)
Publication Date:
OSTI Identifier:
22479629
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 57; Journal Issue: 2; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPARATIVE EVALUATIONS; EIGENVECTORS; ENTROPY; MARKOV PROCESS; MIXED STATES; NOISE; QUANTUM SYSTEMS; TENSORS