skip to main content

Title: Synchronous correlation matrices and Connes’ embedding conjecture

In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
Authors:
 [1] ;  [2]
  1. Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368 (United States)
  2. Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)
Publication Date:
OSTI Identifier:
22479618
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 57; Journal Issue: 1; Other Information: (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGEBRA; CORRELATIONS; DIAGRAMS; GRAPH THEORY; MATRICES