skip to main content

Title: Hydrothermal synthesis of iron phosphate microspheres constructed by mesoporous polyhedral nanocrystals

Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres with the diameters of several micrometers were prepared by a facile one-step hydrothermal method without using any templates, only employing FeCl{sub 3}·6H{sub 2}O and NaNH{sub 4}HPO{sub 4} as the initial materials. The obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM), respectively. The characterizations revealed that the as-prepared microspheres are constructed by the polyhedral nanoparticles with an average diameter of 100 nm. The corresponding FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals can be easily obtained by calcining a sphere-like Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. - Graphical abstract: Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·H{sub 2}O microspheres with a diameter of several micrometers were successfully obtained by a simple, template-free hydrothermal route. FePO{sub 4} microspheres constructed by mesoporous polyhedral FePO{sub 4} nanocrystals could be easily prepared by calcining an Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. Display Omitted - Highlights: • Monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres were prepared by a facile hydrothermal method without using any templates • Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres present a novel morphology, which was constructed by closely polyhedral nanoparticles. •more » The FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals obtained by calcining Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor.« less
Authors:
;  [1] ;  [2]
  1. Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013 (China)
  2. School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)
Publication Date:
OSTI Identifier:
22476167
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 107; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; HYDROTHERMAL SYNTHESIS; IRON CHLORIDES; IRON PHOSPHATES; MICROSPHERES; NANOPARTICLES; NANOSTRUCTURES; RESOLUTION; SCANNING ELECTRON MICROSCOPY; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION