skip to main content

Title: Microstructural characterization of Charpy-impact-tested nanostructured bainite

In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Specialmore » sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during impact loading.« less
Authors:
; ;  [1] ;  [2] ;  [1]
  1. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)
  2. Iron and Steel R&D Department, China Steel Corporation, Kaohsiung, Taiwan, ROC (China)
Publication Date:
OSTI Identifier:
22476155
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 107; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BAINITE; CRACK PROPAGATION; CRACKS; FILMS; FRACTOGRAPHY; IMPACT TESTS; MARTENSITE; MICROSTRUCTURE; NANOSTRUCTURES; PHASE TRANSFORMATIONS; SCANNING ELECTRON MICROSCOPY; STRAIN RATE; STRAINS; SURFACES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION