skip to main content

Title: Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy

Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52 wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} andmore » λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in σ{sub u} and σ{sub y}.« less
Authors:
 [1] ; ; ;  [2] ;  [3] ;  [1]
  1. Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)
  2. Aix Marseille Université, CNRS, IM2NP UMR 7334, 13397 Marseille (France)
  3. Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)
Publication Date:
OSTI Identifier:
22476153
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Characterization; Journal Volume: 107; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BINARY ALLOY SYSTEMS; BISMUTH COMPOUNDS; CASTING; CORRELATIONS; DENDRITES; EUTECTICS; MECHANICAL PROPERTIES; METALLOGRAPHY; MICROSTRUCTURE; PRECIPITATION; SCANNING ELECTRON MICROSCOPY; SOLDERING; SOLIDIFICATION; TIN COMPOUNDS